Dynamics Explorer 2 # Ion Drift Meter (IDM) 81-070B-06A Retarding Potential Analyzer Files (RPA) 81-070B-07A This catalog contains two data sets. The IDM/RPA data sets consist of 5 tapes. The D tapes are 8 millimeter, low density, and the C tapes are 4 millimeter. The tapes were created using the Backup utility on a VAX computer. The data are written in binary and the documentation files are ASCII when restored to VMS Files-11 format. Backup listings have been included for reference. The tape numbers, and backup save_set names, along with the time spans follow: | D# | C# | Files | Save_Set Name | Time Span | |---------|----------|-------|----------------|-----------------------| | D107809 | C-031616 | 3 | DEB6_0001A.BCK | 08/15/81 - 02/16/83 | | D107810 | C-031617 | 3 | DEB7_0001A.BCK | 08/06/81 - 02/21/82 | | D107811 | C-031618 | 3 | DEB7_0002A.BCK | 02/21/82 - 09/06/82 | | D107812 | C-031619 | 3 | DEB7_0003A.BCK | 09/06/82 - 02/17/83 | | D108237 | C-032332 | 3 | DE2RPA.BCK | 08/06/81 - 02/16/83** | ^{**} This is the revised RPA data submitted in June'95. Both D and C tapes are high density, (8500 mode), 8 millimeter. Sample listing of IDM VOLDESC. SFD ### CCSDXZLM0001SMARK001CCSDXVNM0002SMARK002 LOG_VOL_IDENT: USANASANSSDEMAC_0001 LOG_VOL_INITIATION_DATE: 1992-09-15 LOG_VOL_CLOSING_DATE: 1992-09-15 LOG_VOL_CAPACITY: 2.2GB LOG VOL FILE STRUCTURE: VAX FILES-11 STRUCTURE LEVEL 2 Written with backup utility as a save set with name part of the TAPE LENGTH: 106 METERS VOLUME_DRIVE_MFGR_AND_MODEL: AVIV, model ACT850 COMPUTER_MFGR: DIGITAL EQUIPMENT CORPORATION OPERATING_SYSTEM: VMS, VERSION 5.5 COMPUTER_SYSTEM: VAX 4000/500 TECHNICAL_CONTACT: Robert A. Power and/or Dr. William R. Coley Center for Space Sciences University of Texas at Dallas, M.S. Fo2.2 P. O. Box 830688 Richardson, Texas 75083-0688 214-690-2851 SPAN Address - UTSPAN::UTADNX::UTDSSA::POWER PREV_LOG_VOLS: NONE # CCSDXVNM0002EMARK002CCSDXKNM0002SMARK003 DATA_SET_NAME: DREFT METER FILES (IDM) DATA_SOURCES: DYNAMICS EXPLORER 2, ION DRIFT METER (IDM) SCIENTIFIC_CONTACTS: Dr. William B. Hanson and/or Dr. R. A. Heelis Center for Space Sciences University of Texas at Dallas, M.S. Fo2.2 P. O. Box 830688 Richardson, Texas 75083-0688 214-690-2851 SPAN Address - UTSPAN::UTADNX::UTDSSA::HEELIS # SOURCE_CHARACTERISTICS: # A. DESCRIPTION OF SPACECRAFT: The Dynamics Explorer 2 spacecraft was one of two satellites launched for the Dynamics Explorer program. The two spacecraft were launched together into coplanar polar orbits for the purpose of studying coupling between the magnetosphere, ionosphere, and the atmosphere. The DE-2 spacecraft was placed in a low elliptical orbit whereas the DE-1 orbit was highly elliptical. Instruments aboard the DE-2 spacecraft were: magnetometer, vector electric field instrument, neutral atmosphere composition spectrometer, wind and temperature spectrometer, Fabry-Perot intereferometer, ion drift meter, retarding potential analyzer, low altitude plasma instrument, and Langmuir probe. ### B. ORBIT INFORMATION: Because the Delta launch vehicle did not complete a full burn the DE-2 satellite was placed in a lower than anticipated polar orbit, initially 1012 by 309 km. The orbital period was 98 min. The DE-1 and DE-2 satellites were launched by the same vehicle so that their orbits would be coplanar, allowing occasional two-point measurements along magnetic field lines. The DE-2 spacecraft spun once per orbit and the spin axis was perpendicular to the orbital plane so that one axis of the satellite always was aligned with the center of the earth. # C. PERFORMANCE: The DE-2 spacecraft performed well through its lifetime. Power limitations forced the duty cycle to be limited to an average which was originally targeted at 30%. The lifetime of the spacecraft was shorter than anticipated because of the less than nominal performance of the launch vehicle. The launch was on August 3, 1981 and the DE-2 satellite reentered the atmosphere on February 19, 1983, with the last contact the day before. ### INVESTIGATION OBJECTIVES: Among the science objectives for the DE program was the study of the electrodynamics of the ionosphere and its application to ionosphere-magnetosphere interactions. The IDM objective was to provide a measure of the cross-drift ion velocity in the ionosphere. This data is used in studies of the ionospheric electric field and ionosphere-thermosphere interactions. ### INSTRUMENT ATTRIBUTES: # A. DESCRIPTION OF INSTRUMENT The Ion Drift Meter (IDM) consists of two sensors that view approximately along the spacecraft velocity vector. Each sensor has a square entrance aperture to a gridded region in front of a collector with four quadrant sectors. By comparison of the ion currents to each sector it is possible to measure the angle of arrival of the ions in two mutually perpendicular directions perpendicular to the look direction of the sensor. From this angular information, knowledge of the ion velocity along the sensor look direction from the RPA and knowledge of the spacecraft attitude, it is possible to derive the ambient ion drift along the two mutually perpendicular directions. (See Heelis et al., Space Sci. Instrum., 5, 511, 1981) ### B. OPERATIONAL MODES: The IDM provides absolute measures of the ion arrival angle 4 times per second and measurements of the angle relative to an absolute value, established every 8 seconds, at the rate of 32 samples per second. ### C. MEASURED PARAMETERS: Using the velocity of the spacecraft relative to the ambient plasma, it is possible to use the angular information provided by the IDM to compute the ion velocity along the mutually perpendicular directions (nominally horizontal, perpendicular to the spacecraft's orbital plane, and vertical). # D. PERFORMANCE_OF_THE_INSTRUMENT: The IDM provided data on the ion arrival angle for the entire duration of the DE-2 lifetime. Interpretation of this data in terms of ion drifts requires the assumption of zero ram drift during the period of failure (81317 06:26:40 UT to 82057 13:16:00 UT) of the Retarding Potential Analyzer (RPA). This is usually not a serious limitation (see DATA_SET_QUALITY). ### E. RESOLUTION: IDM geophysical data files provide absolute measurements of the cross track ion drift velocity 4 times per second ## PARAMETERS: IDM data files contain geophysical data in 8 second blocks corresponding to the standard segment of data on the DE spacecraft. Each 8 second block of IDM data containing 32 pairs of mutually perpendicular ion drift velocities in spacecraft coordinates, is accompanied by some orbit position information. # DATA SET QUALITY: IDM data is of high quality since only absolute ion drift velocities have been retained in the data files. This higher resolution data has not been corrected for the presence of ion drifts along the sensor look direction. If such a drift Vx exists then the value in the file should be corrected by the factor (Vs +Vx)/Vs, where Vs is the spacecraft velocity along the sensor look direction. This correction factor can be as high as 20%. Values of Vx are available from the Retarding Potential Analyzer (RPA) files. ### DATA PROCESSING OVERVIEW: ### A. DATA PROCESSING CYCLE: Raw telemetry segments were reduced to IDM mission analysis files (MAF's) utilizing production processing on the project computer. The cpu commitment to IDM analysis could not be retained during the periods when the TM was initially available. Thus a situation in which TM file promotion was required for IDM analysis evolved. This quickly resulted in a backlog of unprocessed TM which still exists. Though data files for most data segments exists some files do not exist at all and others require complete reprocessing due to inadequate least-squares analysis. ### B. HISTORY All data was originally reduced on project computers at GSFC. More recently an attempt to transfer telemetry files to local computers at the investigators site has been undertaken. Some data files originate from reduction of telemetry on local computers. This data is usually of higher quality and higher temporal resolution owing to the resources that can be applied to it. It is not identified in any way as originating from this source. # DATA USAGE: Usage of the geophysical data is not formally restricted. Users are urged to be cautious in interpretation of structure and discontinuities in the IDM data. In many cases such structure is real, but it may also be caused by instrumental noise or telemetry problems. Use of the data quality flags is encouraged to to ensure that the data is used correctly. # DATA_ORGANIZATION: Geophysical data files exist for each DE2 telemetry segment. These data files may be identified by orbit number or by approximate UT start time. # CCSDXKNM0002EMARK003CCSDXKNM0002SMARK005 LOG_VOL_TIME_COVERAGE: 1981-08-15 TO 1983-02-16 TYPE_OF FILE TIME COVERAGE: IDM 1981-08-15T03:44:38 1983-02-16T19:54:45 NAMING_CONVENTION: IDM files are named according to the U.T. starting date and time of the data in the file. Example: IDM821141206.DAT indicates that this is an IDM file for the year (19)82, day 114, hour 12, minute 06. PREV_LOG_VOL_TIME_COVERAGE: NONE CCSDXKNM0002EMARK005CCSDXRNM0003SMARK006 NESTING=L REF=IDMFORMAT.SFD CCSDXRNM0003EMARK006CCSDXRLM0003SMARK007 ADI=NSSD0055 CLASS=I NESTING=N SCOPE=EACH REF=[IDM]IDM*.dat;* CCSDXRLM0003EMARK007CCSDXZLM0001EMARK001 Sample listing of IDM FORMATISFD ### CCSDYDNM000200NSSD0055SMARK001 TYPE_OF_FILE_NAME: FILES RECORD_TYPE_NAMES: IDM_1 RECORD TYPES: RECORD TYPE NAME: IDM 1 MAXIMUM_RECORD_TYPE_LENGTH: 4100 BYTES FIELD_NAME: DATE FIELD MNEMONIC: DATE FIELD_DESCRIPTION: Year and day number of the year of the record in the form YYDDD. (e.g. 81264 is day 264 of year 1981.) FIELD RESOLUTION: 1 day FIELD RANGE: MINIMUM_VALUE: 81215 MAXIMUM_VALUE: 83049 FIELD IDIOSYNCRACIES: None FIELD SYNTAX: VI4 FIELD_NAME: TIME FIELD MNEMONIC: TIME FIELD_DESCRIPTION: The universal time (UT) time of the day in milliseconds (ms) of the start of the 8 second block of data contained in the record. All the fields describing satellite location are calculated for this time. FIELD_RESOLUTION: 1 ms FIELD RANGE: MINIMUM VALUE: 0 MAXIMUM VALUE: 86399999 FIELD_IDIOSYNCRACIES: None FIELD_SYNTAX: VI4 FIELD NAME: Geographic latitude FIELD MNEMONIC: Glat FIELD_DESCRIPTION: The geographic latitude of the spacecraft in degrees. FIELD RESOLUTION: 0.0001 degrees FIELD RANGE: MINIMUM_VALUE: -90.0 degrees MAXIMUM_VALUE: 90.0 degrees FIELD_IDIOSYNCRACIES: See RECORD_TYPE_ALGORITHMS FIELD SYNTAX: VR4 FIELD NAME: Geographic longititude FIELD MNEMONIC: Glon FIELD DESCRIPTION: The geographic longititude of the spacecraft in degrees. FIELD RESOLUTION: 0.001 degrees FIELD RANGE: MINIMUM_VALUE: -180.0 degrees MAXIMUM_VALUE: 180.0 degrees FIELD_IDIOSYNCRACIES: See RECORD_TYPE_ALGORITHMS FIELD SYNTAX: VR4 FIELD NAME: Invariant latitude FIELD MNEMONIC: Ilat FIELD DESCRIPTION: The invariant latitude of the spacecraft in degrees. FIELD RESOLUTION: 0.0001 degrees FIELD RANGE: MINIMUM_VALUE: 0.0 degrees MAXIMUM_VALUE: 90.0 degrees FIELD_IDIOSYNCRACIES: See RECORD_TYPE_ALGORITHMS FIELD_SYNTAX: VR4 FIELD NAME: Magnetic local time FIELD MNEMONIC: Mlt FIELD_DESCRIPTION: The magnetic local time of the spacecraft in hours. FIELD_RESOLUTION: 0.0001 hours FIELD_RANGE: MINIMUM VALUE: 0.0 hours MAXIMUM_VALUE: 24.0 hours FIELD IDIOSYNCRACIES: See RECORD TYPE ALGORITHMS FIELD SYNTAX: VR4 FIELD_NAME: Altitude FIELD MNEMONIC: Alt FIELD DESCRIPTION: The altitude of the spacecraft in km. FIELD_RESOLUTION: 0.01 km FIELD RANGE: MINIMUM_VALUE: 200. km MAXIMUM_VALUE: 1012. km FIELD_IDIOSYNCRACIES: See RECORD_TYPE_ALGORITHMS FIELD SYNTAX: VR4 FIELD_NAME: Spacecraft Velocity FIELD MNEMONIC: Scvel FIELD_DESCRIPTION: The geocentric velocity of the spacecraft in m/s FIELD_RESOLUTION: 1.0 m/s FIELD RANGE: MINIMUM_VALUE: 7000. m/s MAXIMUM VALUE: 8000. m/s FIELD IDIOSYNCRACIES: See RECORD TYPE ALGORITHMS FIELD SYNTAX: VR4 FIELD_NAME: Number of TIME-VELOCITY pairs in IDM_1 record FIELD MNEMONIC: Nrec FIELD DESCRIPTION: This is an integer giving the number times the Vtime and Vion fields will be repeated in the record. FIELD_RESOLUTION: 1 FIELD_RANGE: MINIMUM_VALUE: 4 MAXIMUM_VALUE: 508 FIELD IDIOSYNCRACIES: None FIELD SYNTAX: VI4 FIELD_NAME: Time of ion velocity measurement FIELD_MNEMONIC: Vtime FIELD DESCRIPTION: The universal time (UT) time of the day in milliseconds (ms). of the following ion velocity measurement (Vion). FIELD_RESOLUTION: 1 ms FIELD RANGE: MINIMUM_VALUE: 0 MAXIMUM VALUE: 86399999 FIELD IDIOSYNCRACIES: None FIELD SYNTAX: VI4 FIELD NAME: Ion velocity measurement FIELD MNEMONIC: Vion FIELD_DESCRIPTION: The component of the ion velocity parallel to the y-axis (approximately vertical, a positive value indicates an upward velocity) or the z-axis (approximately horizontal) of the spacecraft rounded to the nearest 1 meter/second. The first two digits to the right of the decimal point are not data values, but indicators of data quality and the mode of operation of the IDM. In the most common mode of operation, two velocity measurements are made along one axis during a minor telemetry frame (1/4 second). Normally, only the first of these is included in these files. This means that the data points for each axis will be equally spaced in time. If the first point is determined to be bad (fill or "flyer") then the second point will be used. If the first digit after the decimal point is even then the first data point in the minor frame has been used. If odd, the second. In addition, velocity measurements taken during times of low ion density (Ni) are not as reliable. The first digit after the decimal indicates this as follows: 0 or 1 ; Ni > 2.0E4, velocity measurements are good. 2 or 3 ; 2.0E4 > Ni > 7.0E3, averaging several data points is recommended 4 or 5; Ni < 7.0E3, data are unreliable. The second digit after the data point indicates the axis of the measurement. If the second digit after the decimal point is even, then the associated velocity measurement is along the horizontal (z) axis. If odd, the measurement is of the vertical (y-axis) velocity. Some modes of operation of the IDM may result in unequal time spacing of the data points or sections of data where only one axis is sampled. Use of the time tags and the axis flag is therefore always recommended. Caution should be exercised when using the data near the beginning or the end of a file. There are often periods of several (up to 10) 8-second blocks where the satellite instrumentation and/or telemetry is in the process of being turned on or off. As a result any large value (>4000 m/s) for the ion velocity measurements at such times is probably incorrect. FIELD RESOLUTION: 1 m/s FIELD RANGE: MINIMUM_VALUE: -5000. m/s MAXIMUM_VALUE: 5000. m/s FIELD IDIOSYNCRACIES: See RECORD TYPE ALGORITHMS FIELD SYNTAX: VR4 RECORD_TYPE_FIELD_RELATIONSHIPS: The order of the fields in an IDM_1 record is as follows: DATE, TIME, Glat, Glon, Ilat, Mlt, Alt, Nrec, 1st Vtime, 1st Vion, 2nd Vtime, 2nd Vion,, Nrec-th Vtime, Nrec-th Vion. Each record nominally contains 8 seconds of data. RECORD_TYPE_ALGORITHMS: The real fields of an IDM_1 record are initialized with a fill value of 9999999.0 and subsequently the geophysical values are inserted. Thus if there is no data available for a given parameter that particular field will contain the fill data value. MISCELLANEOUS_TYPE_OF_FILE_ATTRIBUTES: IDM files are sequential with a single type of variable length record (IDM_1). CCSDYDNM000200NSSD0055EMARK001 VAX/VMS Backup format 4.5 Gig | DE-2 RPA NSSDC Files
Created at Univ. Texas at. Dullas
W. Robin Coley 6/12/95 | maxell | |---|---------| | TAPELAFEL: DEZRPA
Sure Sct: DEZRPA.BCK | | | To: Dieter Bilitza | | | | | | | U Maria | D 108237 # HEX DUMP OF IDM812270344.DAT as restored from D-107809 | RECORD 180
(0)
(40) | RECORD 2
(0)
(40) | RECORD 1 (| |------------------------------------|---------------------------|--| | 0300 4838 09
E3008041 EC | 46 BYTES
0300 1 | 274 BYTES
6/277
0300
CD00CDC4
00
CD00CCC4
00
CD00CDC4
00
CD00CDC4
00
CD00CDC4
00
CD00CDC4 | | ES
090007A2
EC51 | 7B14 | 0000E9C9
0000CDD
0000CDD
0000CDD
0000CDD
0000TDD
008071DD
008071DD | | E3001343 | CD005243 | CD00CDC4
CD00CDC4
CD00CCC4
CD00CCC4
CD00CCC4
CD00CCC4 | | 403933C3 | A0ED0D44 | 73080D44 F62860CB 0080C5CF 0000824D5 0080E8DE 00804DE3 | | 50833343 | 20163E43 | A01E3D43
CD0068C3
CD00CCC4
CD00CCC4
CD00CDC4
CD00CDC4
CD00CDC4 | | 11C6B340 | 29D74B42 | C5054842 0000DDC8 00003CD1 0000A1D5 00806DDF 008065DF 008065DF | | 7868A444 | B1934245 | D3A94345
CD00CFC4
CD00CCC4
CD00CDC4
CD00CDC4
CD00CDC4
CD00CDC4
CD00CDC4 | | F03DF646 | 6085E746 | 7830E746
000054CD
0000E9D1
008018D7
00807DDB
00807DDB
0080DCE0
008041E5 | | 06490100 | 727B0100 | 20642000
CD00CDC4
CD00CCC4
CD00CCC4
CD00CDC4
CD00CDC4
CD00CDC4 | | 000022A3 | OOOOACES | 00004CC9
0080D1CD
000030D3
008095D7
0080F4DC
008059E1
008059E6 | | | | | IDM 5-107809 08/15/81-02/14/83 # HEX DUMP OF RPA812181706.DAT Restored from D-107810 | | REC | | REC | ~ ^ Z | |----------------------------------|------------|----------------------------------|----------|--| | 40)
80) | RECORD 147 | 40)
80) | RECORD 2 | RECORD 1 (0) (40) (80) | | 0300423D
009C184C
D3DA7B45 | 86 BYTES | 0300423D
005C0347
471D6745 | 86 BYTES | 86 BYTES
0300423D
00002D47
C4136745 | | 01005813
7F968046
44CF | TES | 0100FB64
00C8184C
C475 | ហ | S
0100BB45
00D0184C
4704 | | 8703C4FF
0080184C | | AC03ECFF
7F96184C | | AC03ECFF
7F96184C | | FFFF95C5
7F96184C | | FFFF7345
7F96184C | | FFFF8A45
7F96184C | | 0060A442
7F960000 | | 00805643
7F96A041 | | 00000944
7F960042 | | 40E1FFC3
00004041 | | A0703EC4
00004041 | | 289C46C4
00004041 | | 32330846
00006442 | | 99996646
0000C9C2 | | 99994C46
0000CDC2 | | 0000F747
1D4A58C3 | | 00F00C48
EB654CC3 | | 00E01948
BA0D4CC3 | | 008A5340
3C500743 | | 00AODDCO
7CA4E342 | | 0074FAC0
7C82E442 | | 3433D747
0E525B42 | | F2D2D747
B3245942 | | 365EDC47
AB995942 | | | | | | | RPA D-107810 08104181 - 02121182